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WHAT IS A CCSN MODEL?

Our code, CHIMERA, has

Spectral Neutrino Transport (IMGFLD-TRANS,
Bruenn) 1n

Shock-capturing Hydrodynamics (VH1, Blondin)
Nuclear Kinetics (XNet, Hix & Thielemann)

Plus Realistic Equations of State, Newtonian Gravity
with Spherical GR Corrections.

Other models use a variety of approximations

Self-consistent models use full physics
to the center.

L

L2

Parameterized models replace the core Q
with a specified neutrino luminosity. S "
0y

y
Leakage & IDSA models simplify \ o /00 75
(oversimplify?) the transport. Ray-by-Ray Apmelmatlon
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CAN WE AGREE ON ANYTHING?

Self-Consistent Models using

Discrete Ordinates

, VTEF, M1

and MGFLD can produce quite
similar results when used

1n one dimension

with limited opacities & EOS.
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WHAT IS A COMPLETED MODEL.?

Success should be determined by comparison to observations, but at

what level of completion?

Shock velocity reaching 10° km/s?

Explosion energy (or surrogate)
reaching ~1B?

Ejecting ~0.1 My of Nickel?
Looking like Cas A?
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WHEN DOES THE EXPLOSION END?

Even 1n our most fully
developed model, the
explosion energy has

not leveled off 1.3
seconds after bounce.

The reason 1s that
accretion continues at
an appreciable rate,
showing no sign of
abating.

W. R. Hix (ORNL/UTK)
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WHEN DOES THE EXPLOSION END?
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Even 1n our most fully
developed model, the
explosion energy has
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abating. -
This extends the “hot &g -
bubble” phase and

suppresses the
development of the

PNS wind.
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WHAT IS 2D GOOD FOR?

In both 2D and 3D, explosions are preceded by the development of
large scale convective flows that span the heating region.

However, in 2D Jool. Melson (2015) 3Ds v
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Is 2D TURNING DOWN THE HEAT?

The Rayleigh-Taylor Instability, driven in CCSN by neutrino heating,
favors large scale plumes, regardless of dimensionality.

600

In 2D, the turbulent cascade
also favors organizing small
scale motion into larger

scale flows.

400

200

Y Axis (km)
Y Axis (km)

However, in 3D, the cascade
favors tearing apart large
scale flows. Thus in 3D, R-T
requires more time and
more heating to develop.

(km)

This implies that successful 2D models will tend to have lower
entropy 1n the heating regions.

This likely impacts the degree of alpha-richness in the ejecta.
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How PREDICTIVE ARE THE MODELS?

Multi-D introduces stochastic flow, raising uncertainty in the range of
variations if the same model 1s run multiple times.

Cardall & Budiardja (2015) ran 160 3D hydrodynamic simulations
mimicking SASI-dominated and convectively-dominated CCSN.
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This gives some hope that convective models, at least, are predictive.
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STILL EXPLODING AN ONION?

Observations tell us that the explosion, and the ejected elements, are
asymmetric. Yet we rely on spherically symmetric models to
understand supernova nucleosynthesis.

Ni, O+Ne+Mg,

Reality

Hughes, Rakowski, Burrows & 1D
Slane 2000

W. R. Hix (ORNL/UTK) Brainstorming in Basel, October 2016



STILL EXPLODING AN ONION?

Observations tell us that the explosion, and the ejected elements, are
asymmetric. Yet we rely on spherically symmetric models to

understand supernova nucleosynthesis. ni. 73
O+Ne+Mg: 3%

This colors our discussion, for example
the notion that the matter created
closest to the neutron star 1s most
sensitive to the “mass cut”.

time: 9003 s

Reality

LY _ 1.5e12 cm !

Wongwathanarat, Muller &
Janka (2015)
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SLOW NI1?

Unlike 1D, Nickel and Titanium have higher velocities than Silicon
and Oxygen, thus they are not preferentially sensitive to fallback.
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How DISTORTED IS THE MASS CUT?

Peak Temperature |GK]

The Lagrangian view provided by tracer particles reveals the
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WHERE IS THE VP-PROCESS?

The vp-process 1s very weak in our models, even at 1.2-1.4 seconds.
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The suppression of the PNS wind is delaying or preventing a strong
Vvp-process from occurring.
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How MANY TRACERS IS ENOUGH?

One way to view the limitations 10° g1 wHOT -
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CAN WE MAKE T1 WITHOUT NI1?

The observations of Cas A by Grefenstette, ... (2014), and follow-ups
at other wavelengths, put significant limits on the amount of Fe (N1)
that is co-resident with **Ti, which 1D models can’t replicate.
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CAN WE MAKE T1 WITHOUT NI1?

The observations of Cas A by Grefenstette, ... (2014), and follow-ups
at other wavelengths, put significant limits on the amount of Fe (N1)
that is co-resident with **Ti, which 1D models can’t replicate.
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ARETD RESULTS REASONABLE?

Until we can
replace 1D CCSN
models 1n all of
their applications,
we can use the 2D
models to identity
areas of concern.

Intermediate
mass elements,
up to A=50, are
similar, though
significant
1SOtOpIC
differences exist.

W. R. Hix (ORNL/UTK)
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Iron peak and heavier, up to A=90, the differences get larger.
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How DOES MULTI-D IMPACT EJECTA?

Multi-dimensional dynamics allows the ejecta to experience a wider
variety of temperature, density, electron fraction and neutrino
exposure.
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Deeper Mass Cut results in modest increase 1n intermediate mass and
iron-group elements.
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CAN WE MAKE 48CA IN A CCSN?

Argument has been that ejecta in parameterized spherically
symmetric models is all too high in entropy to make **Ca.

F . In the self-consistent, multi-dimensional models,
rame o
ime (elapse) +06208 - ACCrEt1on streams occasionally dredge neutron-rich
Time (bounce) +0357.6

matter from near the neutron-star.

If this matter 1s not heated too much by subsequent
interactions, such matter can be the source of “®Ca.

2.0 2.5
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WHAT ELSE CAN WE FIND?

Ne-20  Si-28 D9.6-sn160-3D t =-50.4 ms
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ANSWERS, SO FAR

Examining the nucleosynthesis of CCSN with models that selt-
consistently treat the explosion mechanism is possible but it requires
running models to times > 1 second for uncertainties like the mass
cut, thermodynamic extrapolation, etc. to become tractable.

Even then, low post-processing resolution 1s a significant uncertainty.

Differences from 1D models are seen 1n differing amounts of 1ron

peak and intermediate mass elements as a result of changes in the
and

The ejection of significantly more proton-rich matter as well as small
quantities of neutron-rich matter can change the production of
individual 1sotopes by orders of magnitude.

Neutrino-Driven wind 1s strongly suppressed by accretion.

There 1s a lot of work yet to be both on the mechanism (especially in
3D) and on the nucleosynthesis.
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