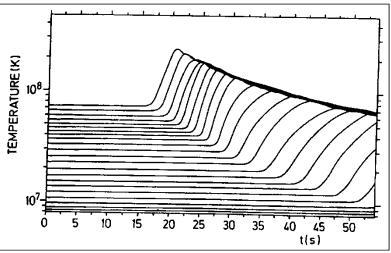
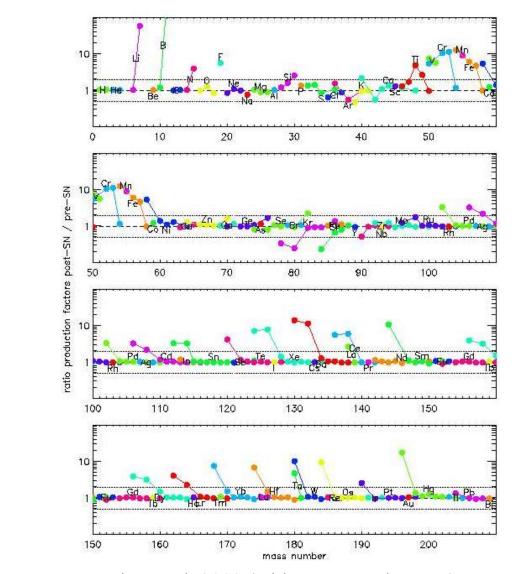
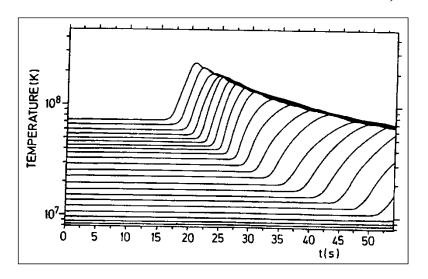

Explosive Nucleosynthesis in the Outer Shells of Massive Stars


Thomas Rauscher

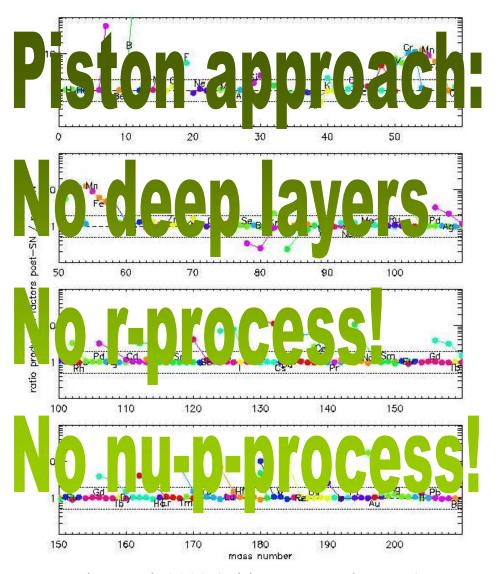
University of Basel, CH & University of Hertfordshire, UK



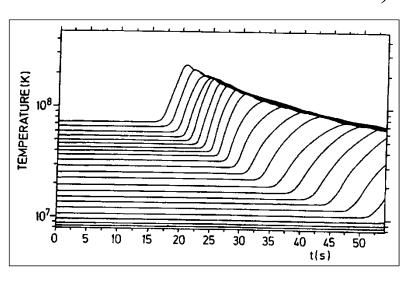
Nucleosynthesis depends on:


- Structure of star
- Energy and propagation of shockwave
- Nuclear reactions during shock passage

Explosive Nucleosynthesis

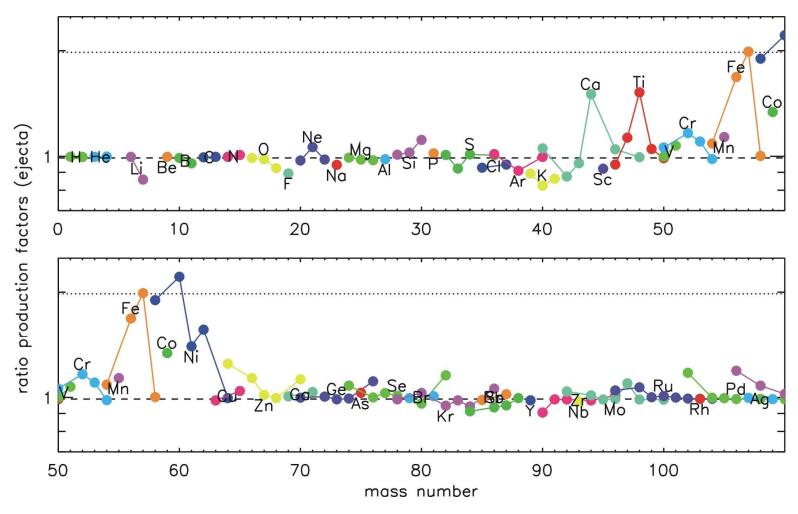


- Li, B, F from *v*-burst
- Ti-Fe-Ni: depends on expl.
 - mech., mass cut, (n-flux)
- <u>y-Process</u> (depending on mass/stellar structure)



Rauscher et al. 2002 (with UCSC and LLNL)

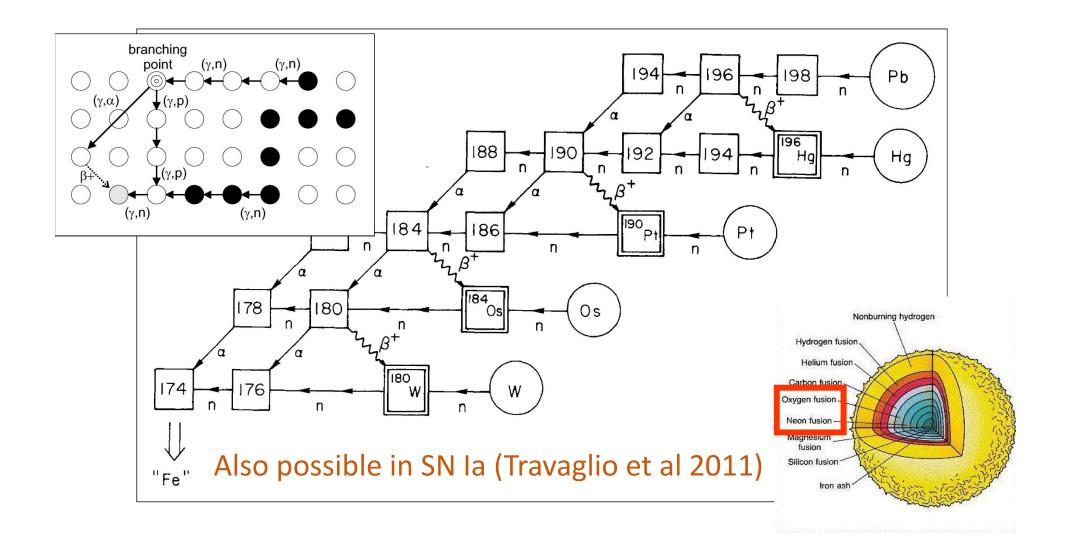
Explosive Nucleosynthesis



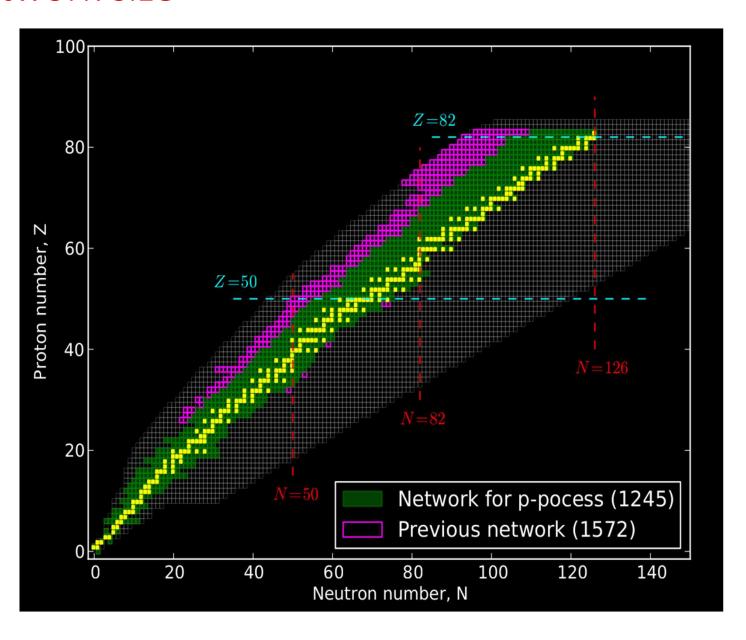
- Li, B, F from *v*-burst
- Ti-Fe-Ni: depends on expl.
 - mech., mass cut, (n-flux)
- <u>y-Process</u> (depending on mass/stellar structure)

Rauscher et al. 2002 (with UCSC and LLNL)

Dependence On Explosion Energy (25 M_{sol})


Ratio: H/L

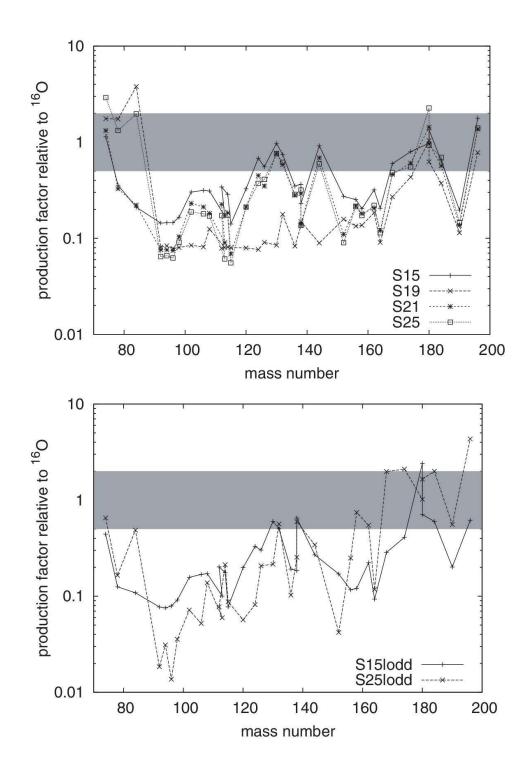
L: 0.1 $M_{\rm sol}$ ⁵⁶Ni (1.735 x10⁵¹ ergs)


KEPLER code (piston)

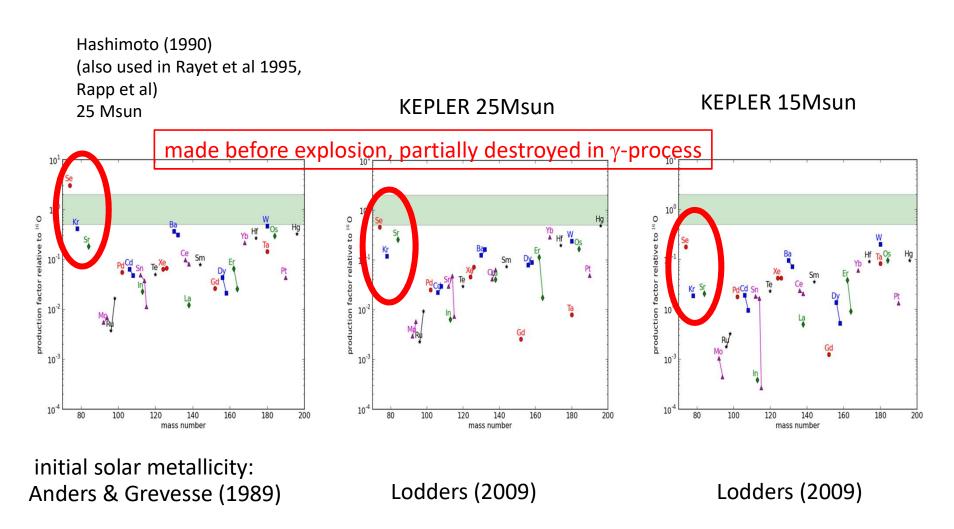
H: 0.2 M_{sol} ⁵⁶Ni (2.293 x10⁵¹ ergs)

The *y*-Process

Network size

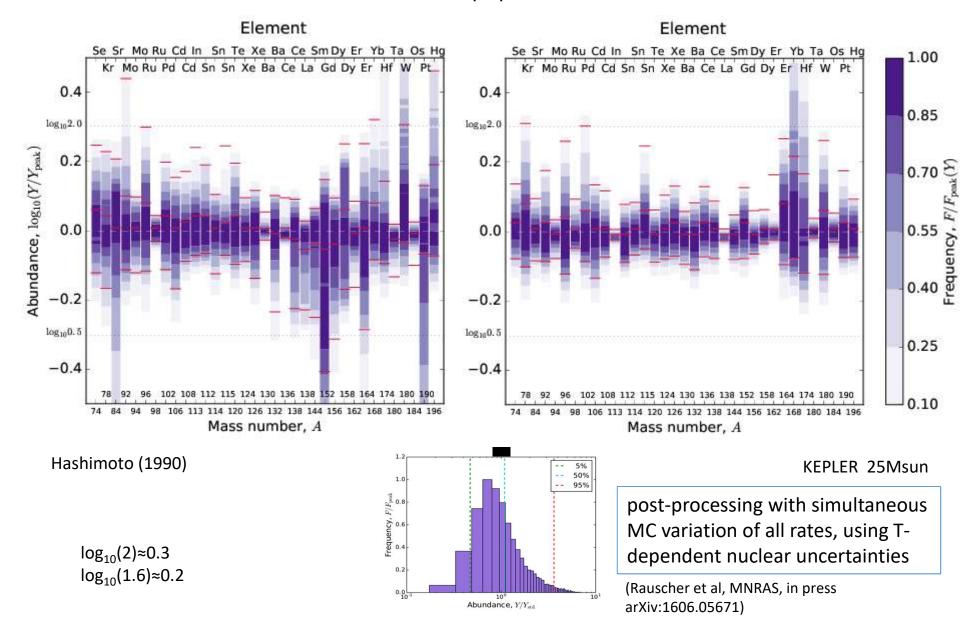


p-Production in various stellar models

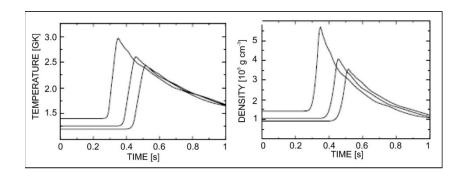

- Depends on progenitor mass
- Depends on initial metallicity
 - Already new Lodders abundances lead to some differences
 - due to big ¹⁶O differences
 - and different pre-SN evolution (mostly in He-burning)

T. Rauscher, N. Dauphas, I. Dillmann, C. Fröhlich, Zs. Fülöp, Gy. Gyürky, Rep. Prog. Phys. 76 (2013) 066201

T. Rauscher, A. Heger, R. D. Hoffman, S. E. Woosley, Ap. J. 576 (2002) 323

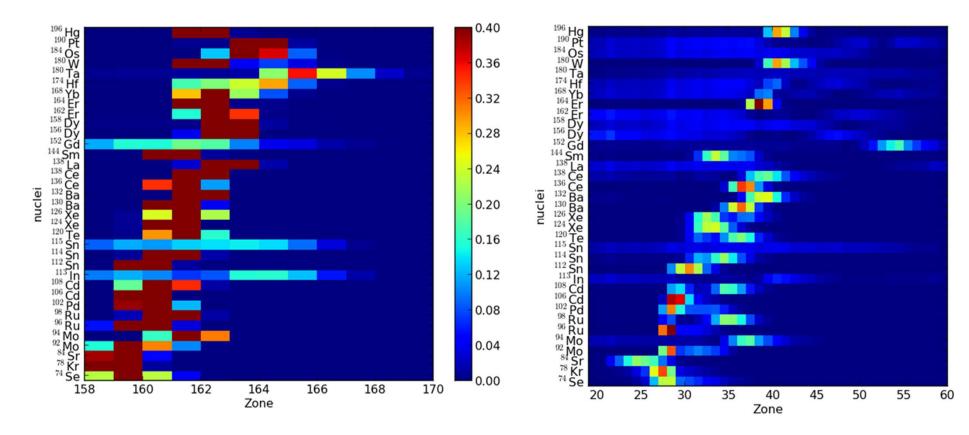


Production factors:



Note: ¹⁶O considered only in PPL to calculate production factors.

Monte Carlo uncertainties of p-production



p-Nucleus Production/Destruction per Zone

Resolution of Hashimoto (1990) zones too crude, especially for light nuclei and some heavy species

Cannot follow detailed temperature evolution, overemphasizes certain temperatures/reactions

Previous variation study using Hashimoto model and manually varying individual rates and rate groups

THE ASTROPHYSICAL JOURNAL, 653:474–489, 2006 December 10 © 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A.

SENSITIVITY OF p-PROCESS NUCLEOSYNTHESIS TO NUCLEAR REACTION RATES IN A 25 M_{\odot} SUPERNOVA MODEL

W. RAPP, J. GÖRRES, AND M. WIESCHER

Department of Physics and Joint Institute of Nuclear Astrophysics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556

H. SCHATZ

Department of Physics and Astronomy, National Superconducting Cyclotron Laboratory and Joint Institute of Nuclear Astrophysics, Michigan State University, 1 Cyclotron Laboratory, East Lansing, MI 48824

AND

F. KÄPPELER

Forschungszentrum Karlsruhe, Institut für Kernphysik, P.O. Box 3640, 76021 Karlsruhe, Germany Received 2005 August 5; accepted 2006 August 14

ABSTRACT

The astrophysical p-process, which is responsible for the origin of the proton-rich stable nuclei heavier than iron, was investigated using a full nuclear reaction network for a Type II supernova explosion when the shock front passes through the O/Ne layer. Calculations were performed with a multilayer model adopting the seed of a preexplosion evolution of a 25 M_{\odot} star. The reaction flux was calculated to determine the main reaction path and branching points responsible for synthesizing the proton-rich nuclei. In order to investigate the impact of nuclear reaction rates on the predicted p-process abundances, extensive simulations with different sets of collectively and individually modified neutron-, proton-, and α -capture and photodisintegration rates have been performed. These results are not only relevant to explore the nuclear-physics-related uncertainties in p-process calculations but are also important for identifying the strategy and planning of future experiments.

Key reaction comparison to the 25 M_{sol} model of Rapp et al. (2006)

N.B.: Comparison of our key rates found by MC variation of KEPLER trajectories

Selected (γ, p) or (n, p) Reactions

Reactions							
$\frac{126 \text{Pa}(\gamma, p) 125 \text{Cs}^*}{110 \text{Sh}(\gamma, p) 109 \text{H}^*}$ $\frac{106 \text{Cd}(\gamma, p) 105 \text{Ag}}{104 \text{Cd}(\gamma, p) 103 \text{Ag}}$ $\frac{104 \text{Cd}(\gamma, p) 103 \text{Ag}}{100 \text{Pd}(\gamma, p) 99 \text{Ph}}$ $\frac{106 \text{Ru}(\gamma, p) 99 \text{Tc}^*}{100 \text{Ru}(\gamma, p) 95 \text{Tc}^*}$	${}^{92}\text{Mo}(\gamma, p){}^{91}\text{Nb}^*$ ${}^{86}\text{Rb}(n, p){}^{86}\text{Kr}^*$ ${}^{85}\text{Sr}(n, p){}^{85}\text{Rb}^*$ ${}^{84}\text{Sr}(\gamma, p){}^{83}\text{Db}^*$ ${}^{78}\text{Kr}(\gamma, p){}^{77}\text{Br}^*$ ${}^{77}\text{Sc}(n, p){}^{77}\text{As}$	75 $S_{O}(n,p)$ 75 A_{O} * 74 $S_{O}(n,p)$ 75 A_{O} * 76 $A_{O}(n,p)$ 76 G_{O} * 75 $A_{O}(n,p)$ 74 G_{O} * 73 $A_{O}(n,p)$ 72 G_{O}					

Lv 2 rate only important after 92 Mo + $\alpha \leftrightarrow \gamma$ + 96 Ru has been constrained

Lv 1 key rate

Selected (γ, α) Reaction Chains

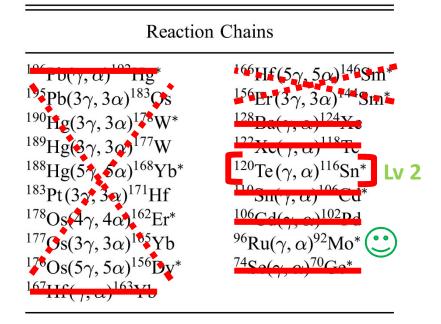
Reaction Chains							
$^{196}\text{Pb}(\gamma,\alpha)^{193}\text{Hg}^*$ $^{195}\text{Pb}(3\gamma,3\alpha)^{183}\text{Cs}$ $^{190}\text{Hg}(3\gamma,3\alpha)^{178}\text{W}^*$ $^{189}\text{Hg}(3\gamma,3\alpha)^{177}\text{W}$ $^{188}\text{Hg}(5\gamma,5\alpha)^{168}\text{Yb}^*$ $^{183}\text{Pt}(3\gamma,3\alpha)^{171}\text{Hf}$ $^{178}\text{Os}(4\gamma,4\alpha)^{162}\text{Er}^*$ $^{177}\text{Os}(3\gamma,3\alpha)^{165}\text{Yb}$ $^{176}\text{Os}(5\gamma,5\alpha)^{156}\text{Dy}^*$ $^{167}\text{Hg}(\gamma,\alpha)^{163}\text{Yb}$	166 Hf $(5\gamma, 5\alpha)^{146}$ Sm* 156 Er $(3\gamma, 3\alpha)^{144}$ Sm* 128 Da $(\gamma, \alpha)^{124}$ Y 122 Xe $(\gamma, \alpha)^{118}$ Te 120 Ta $(\gamma, \alpha)^{116}$ Cu* 106 Cd $(\gamma, \alpha)^{106}$ Cu* 106 Cd $(\gamma, \alpha)^{102}$ Dd 96 Ru $(\gamma, \alpha)^{92}$ Mo* 74 Sa $(\gamma, \alpha)^{70}$ Co*						

Our Lv 1 key rates $^{160}\text{Er} + \alpha \leftrightarrow \gamma + ^{164}\text{Yb}$, $^{176}\text{W} + \alpha \leftrightarrow \gamma + ^{180}\text{Os}$ appear in two of the chains

We find additional key rates not listed in these tables (see list of key rates on previous slide)

Key reaction comparison to the 25 M_{sol} model of Rapp et al. (2006)

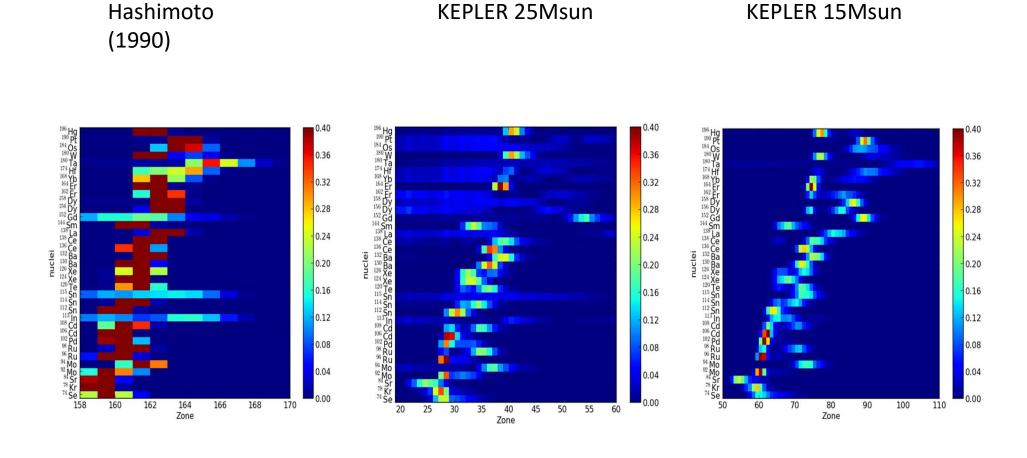
N.B.: Comparion of our key rates found by MC variation of Hashimoto (1990) trajectories

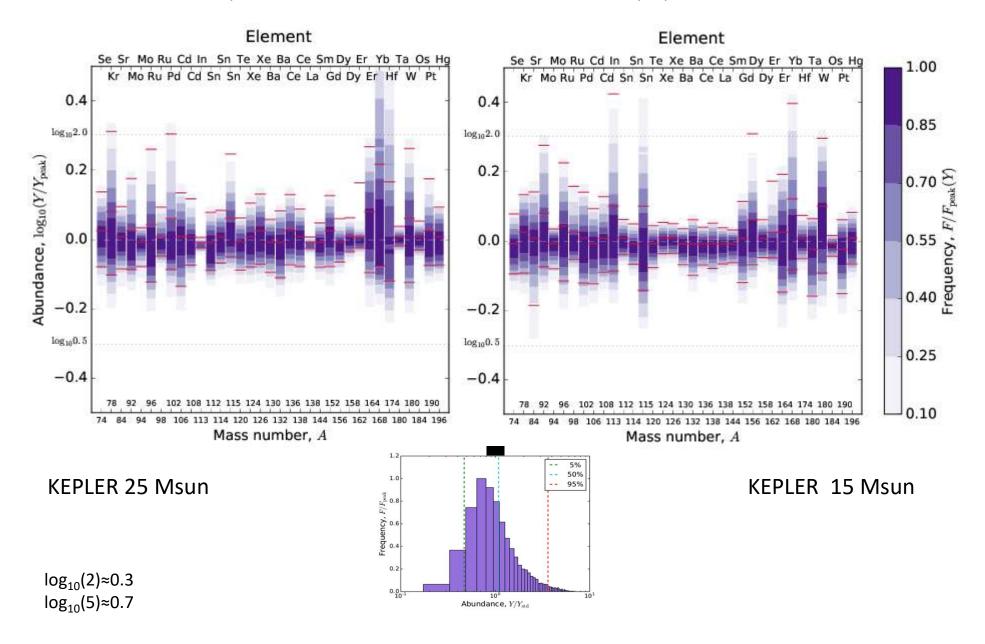

Selected (γ, p) or (n, p) Reactions

Reactions							
$ \frac{126 \text{Po}(\gamma, p) 125 \text{Ce}^*}{110 \text{Sn}(\gamma, p) 109 \text{In}^*} \\ 106 \text{Cd}(\gamma, p) 105 \text{Ag} \\ 104 \text{Cd}(\gamma, p) 103 \text{Ag} \\ 100 \text{Pd}(\gamma, p) 99 \text{Ph} \\ 96 \text{Pu}(\gamma, p) 95 \text{Te}^* $	92 Mo $(\gamma, p)^{91}$ Nb* 86 Rb $(n, p)^{86}$ K* 85 Sr $(n, p)^{85}$ Rb* 84 Sr $(\gamma, p)^{83}$ Pb* 78 Kr $(\gamma, p)^{77}$ Br* 77 Sc $(n, p)^{77}$ As	75 $S_{O}(n,p)$ 75 A_{O} * 74 $S_{O}(n,p)$ 75 A_{O} * 76 $A_{O}(n,p)$ 76 C_{O} * 75 $A_{O}(n,p)$ 74 C_{O} * 73 $A_{O}(n,p)$ 72 C_{O}					

Lv 2 rate only important after a number of others have been constrained

Lv 1 key rate


Selected (γ, α) Reaction Chains


Our Lv 1 key rates 164 Yb + $\alpha \leftrightarrow \gamma$ + 168 Hf, 176 W + $\alpha \leftrightarrow \gamma$ + 180 Os appear in two of the chains

We find additional key rates (Lv 1-3) not listed in these tables.

Abundance change in mass zone:

Uncertainty distribution functions for final p-production

- ➤ Level 1 key rate: strong correlation with abundance change
- ➤ Level 2: strong correlation with remaining abundance after level 1 key rates kept fixed (level 1 rates covered their contribution before)
- ➤ Level 3: strong corr. after level 1 and 2 kept fixed

Consider g.s. contribution to judge experimental possibility for improvement.

Independent of initial magnitude of uncertainty!

	Nuclide	$r_{\rm corr,0}$	$r_{\rm corr,1}$	$r_{\rm corr,2}$	Key rate Level 1	Key rate Level 2	Key rate Level 3	X_0 (2 GK) capture	X ₀ (3 GK) capture
. '	⁷⁸ Kr	-0.77			$^{77}\mathrm{Br} + \mathrm{p} \leftrightarrow \gamma + ^{78}\mathrm{Kr}$			9.63×10^{-2}	4.44×10^{-2}
2		0.38	0.66			$^{79}\mathrm{Kr} + \mathrm{n} \leftrightarrow \gamma + ^{80}\mathrm{Kr}$		1.28×10^{-1}	7.94×10^{-2}
5	92 Mo	-0.87			$^{91}\text{Nb} + \text{p} \leftrightarrow \gamma + ^{92}\text{Mo}$			8.88×10^{-1}	8.24×10^{-1}
-	94 Mo	0.78			95 Mo + n $\leftrightarrow \gamma$ + 96 Mo			9.14×10^{-1}	7.69×10^{-1}
) 1	96 Ru	-0.67			92 Mo + $\alpha \leftrightarrow \gamma$ + 96 Ru			1.00	9.86×10^{-1}
_	102 Pd	-0.71			$^{101}\mathrm{Pd} + \mathrm{n} \leftrightarrow \gamma + ^{102}\mathrm{Pd}$			5.62×10^{-1}	3.97×10^{-1}
<u>-</u>	$^{112}\mathrm{Sn}$	-0.74			$^{111}\mathrm{Sn} + \mathrm{n} \leftrightarrow \gamma + ^{112}\mathrm{Sn}$			7.79×10^{-1}	6.73×10^{-1}
J -	$^{136}\mathrm{Ce}$	0.53	0.66			$^{137}\mathrm{Ce} + \mathrm{n} \leftrightarrow \gamma + ^{138}\mathrm{Ce}$		4.16×10^{-1}	2.54×10^{-1}
ز	¹³⁸ Ce	0.71			$^{139}\mathrm{Ce} + \mathrm{n} \leftrightarrow \gamma + ^{140}\mathrm{Ce}$			8.71×10^{-1}	6.43×10^{-1}
_	$^{138}\mathrm{La}$	0.94			138 La + n $\leftrightarrow \gamma$ + 139 La			6.18×10^{-1}	4.92×10^{-1}
	¹⁴⁴ Sm	0.79			$^{145}\mathrm{Eu} + \mathrm{p} \leftrightarrow \gamma + ^{146}\mathrm{Gd}$			8.06×10^{-1}	6.02×10^{-1}
	$^{164}\mathrm{Er}$	-0.76			$^{160}\mathrm{Er} + \alpha \leftrightarrow \gamma + ^{164}\mathrm{Yb}$			2.13×10^{-1}	1.24×10^{-1}
	¹⁶⁸ Yb	-0.80			164 Yb + $\alpha \leftrightarrow \gamma$ + 168 Hf	170		2.12×10^{-1}	1.26×10^{-1}
	100—	-0.14	-0.67		190	$^{166}\mathrm{Yb} + \alpha \leftrightarrow \gamma + ^{170}\mathrm{Hf}$		1.80×10^{-1}	1.10×10^{-1}
	$^{180}\mathrm{Ta}$	-0.88			$^{180}\mathrm{Ta} + \mathrm{n} \leftrightarrow \gamma + ^{181}\mathrm{Ta}$	170		7.09×10^{-2}	3.96×10^{-2}
	190	0.09	0.90		176 190 0	$^{179}\mathrm{Ta} + \mathrm{n} \leftrightarrow \gamma + ^{180}\mathrm{Ta}$		2.37×10^{-1}	1.46×10^{-1}
	^{180}W	-0.82			$^{176}W + \alpha \leftrightarrow \gamma + ^{180}Os$			1.83×10^{-1}	1.04×10^{-1}
	¹⁹⁰ Pt	-0.79			190 Pt + n $\leftrightarrow \gamma$ + 191 Pt			3.58×10^{-1}	1.58×10^{-1}
	¹⁹⁶ Hg	-0.86	0.04	0.05	195 Pb + n $\leftrightarrow \gamma$ + 196 Pb		107	2.97×10^{-1}	1.89×10^{-1}
		0.17	0.64	0.65			$^{197}\text{Pb} + \text{n} \leftrightarrow \gamma + ^{198}\text{Pb}$	3.28×10^{-1}	2.39×10^{-1}
	$^{92}\mathrm{Nb}$	0.75		· · · · · · · · · · · · · · · · · · ·	$^{92}\mathrm{Zr} + \mathrm{p} \leftrightarrow \gamma + ^{93}\mathrm{Nb}$			9.91×10^{-1}	9.76×10^{-1}
	$^{98}{ m Tc}$	0.89			96 Mo + p $\leftrightarrow \gamma$ + 97 Tc			9.50×10^{-1}	8.56×10^{-1}
	$^{146}\mathrm{Sm}$	-0.65			$^{144}\mathrm{Sm} + \alpha \leftrightarrow \gamma + ^{148}\mathrm{Gd}$			9.99×10^{-1}	9.65×10^{-1}
		0.33	0.79			$^{147}\mathrm{Gd} + \mathrm{n} \leftrightarrow \gamma + ^{148}\mathrm{Gd}$		9.92×10^{-1}	9.28×10^{-1}

KEPLER 15 Msun

Resulting from simultaneous variation of all rates within uncertainties!

Advantage over (manual) independent variations of individual rates:

- 1. Complex, changing flow patterns can be explored without previous identification of paths.
- 2. Rates with larger uncertainty (and even far away from p-nuclide) can dominate uncertainty even when p-abundance is not strongly sensitive to rate change.

Nuclide	$r_{\rm corr,0}$	$r_{\rm corr,1}$	$r_{\text{corr},2}$	Key rate Level 1	Key rate Level 2	Key rate Level 3	X_0 (2 GK) capture	X_0 (3 GK) capture
⁷⁸ Kr	-0.84			$^{77}\mathrm{Br} + \mathrm{p} \leftrightarrow \gamma + ^{78}\mathrm{Kr}$			9.63×10^{-2}	4.44×10^{-2}
	0.34	0.87			$^{79}{ m Kr}+{ m n}\leftrightarrow\gamma+{ m ^{80}Kr}$		1.28×10^{-1}	7.94×10^{-2}
92 Mo	-0.74			$^{91}\text{Nb} + \text{p} \leftrightarrow \gamma + ^{92}\text{Mo}$			8.88×10^{-1}	8.24×10^{-1}
$^{96}\mathrm{Ru}$	-0.73			92 Mo + $\alpha \leftrightarrow \gamma$ + 96 Ru			1.00	9.86×10^{-1}
	-0.43	-0.69			$^{95}{ m Tc} + { m p} \leftrightarrow \gamma + ^{96}{ m Ru}$		7.64×10^{-1}	6.60×10^{-1}
$^{102}\mathrm{Pd}$	-0.87			$^{101}\mathrm{Pd} + \mathrm{n} \leftrightarrow \gamma + ^{102}\mathrm{Pd}$			5.62×10^{-1}	3.97×10^{-1}
$^{112}\mathrm{Sn}$	-0.88			111 Sn + n $\leftrightarrow \gamma$ + 112 Sn			7.79×10^{-1}	6.73×10^{-1}
$^{114}\mathrm{Sn}$	-0.77			113 Sn + n $\leftrightarrow \gamma$ + 114 Sn			1.82×10^{-1}	1.28×10^{-1}
$^{120}\mathrm{Te}$	-0.64	-0.66			$^{119}\text{Te} + \text{n} \leftrightarrow \gamma + ^{120}\text{Te}$		2.43×10^{-1}	1.77×10^{-1}
$^{124}\mathrm{Xe}$	-0.74			123 Xe + n $\leftrightarrow \gamma$ + 124 Xe			8.25×10^{-2}	4.38×10^{-2}
$^{126}\mathrm{Xe}$	-0.75			$^{125}\mathrm{Cs} + \mathrm{p} \leftrightarrow \gamma + ^{126}\mathrm{Ba}$			1.17×10^{-1}	7.41×10^{-2}
	0.30	0.64	0.65			$^{127}\mathrm{Ba} + \mathrm{n} \leftrightarrow \gamma + ^{128}\mathrm{Ba}$	5.78×10^{-2}	3.59×10^{-2}
$^{130}\mathrm{Ba}$	-0.66			129 Ba + n $\leftrightarrow \gamma$ + 130 Ba		,	5.77×10^{-2}	3.55×10^{-2}
$^{132}\mathrm{Ba}$	-0.77			131 Ba + n $\leftrightarrow \gamma$ + 132 Ba			1.07×10^{-1}	5.85×10^{-2}
¹³⁶ Ce	-0.69			$^{135}\text{Ce} + \text{n} \leftrightarrow \gamma + ^{136}\text{Ce}$			1.86×10^{-1}	8.94×10^{-2}
	0.31	0.72			$^{139}\mathrm{Ce} + \mathrm{n} \leftrightarrow \gamma + ^{140}\mathrm{Ce}$		8.56×10^{-1}	6.09×10^{-1}
$^{138}\mathrm{Ce}$	-0.66			$^{137}\text{Ce} + \text{n} \leftrightarrow \gamma + ^{138}\text{Ce}$			4.16×10^{-1}	2.54×10^{-1}
	-0.16	-0.19	-0.66			136 Ce + n $\leftrightarrow \gamma$ + 137 Ce	7.57×10^{-1}	4.70×10^{-1}
$^{144}\mathrm{Sm}$	0.70			$^{145}\mathrm{Eu} + \mathrm{p} \leftrightarrow \gamma + ^{146}\mathrm{Gd}$			8.06×10^{-1}	6.02×10^{-1}
$^{152}\mathrm{Gd}$	-0.74			$^{151}\mathrm{Gd} + \mathrm{n} \leftrightarrow \gamma + ^{152}\mathrm{Gd}$			6.18×10^{-1}	3.87×10^{-1}
	0.43	0.76			$^{153}\mathrm{Gd} + \mathrm{n} \leftrightarrow \gamma + ^{154}\mathrm{Gd}$		5.38×10^{-2}	2.78×10^{-2}
	-0.14	-0.26	-0.73			$^{148}\mathrm{Sm} + \alpha \leftrightarrow \gamma + ^{152}\mathrm{Gd}$	8.14×10^{-1}	5.22×10^{-1}
$^{164}{ m Er}$	-0.78			160 Er + $\alpha \leftrightarrow \gamma$ + 164 Yb			2.13×10^{-1}	1.24×10^{-1}
$^{180}\mathrm{W}$	-0.83			$^{176}W + \alpha \leftrightarrow \gamma + ^{180}Os$			1.83×10^{-1}	1.04×10^{-1}
	-0.19	-0.60	-0.68	, ,		$^{179}\mathrm{Os} + \mathrm{n} \leftrightarrow \gamma + ^{180}\mathrm{Os}$	4.89×10^{-2}	2.49×10^{-2}
$^{196}\mathrm{Hg}$	-0.83			$^{195}\text{Pb} + \text{n} \leftrightarrow \gamma + ^{196}\text{Pb}$			2.97×10^{-1}	1.89×10^{-1}
J	0.31	0.70			$^{197}\mathrm{Pb} + \mathrm{n} \leftrightarrow \gamma + ^{198}\mathrm{Pb}$		3.28×10^{-1}	2.39×10^{-1}
	0.17	0.35	0.67			$^{199}\text{Pb} + \text{n} \leftrightarrow \gamma + ^{200}\text{Pb}$	6.37×10^{-1}	3.47×10^{-1}
⁹² Nb	0.76			$^{90}\mathrm{Zr} + \mathrm{p} \leftrightarrow \gamma + ^{91}\mathrm{Nb}$			1.00	9.95×10^{-1}
$^{146}\mathrm{Sm}$	-0.57	-0.75			$^{144}\mathrm{Sm} + \alpha \leftrightarrow \gamma + ^{148}\mathrm{Gd}$		9.99×10^{-1}	9.65×10^{-1}
	0.34	0.44	0.79			$^{147}\mathrm{Gd} + \mathrm{n} \leftrightarrow \gamma + ^{148}\mathrm{Gd}$	9.92×10^{-1}	9.28×10^{-1}

Remaining rates with some correlation: Cannot account for the remaining uncertainty alone! Not "key rates" but of interest in combination with other rates after key rates have been determined.

Nuclide

 $r_{\rm corr.3}$

					⁷⁴ Se	0.4	75 As + p \leftrightarrow n + 75 Se
Nuclide	$r_{\rm corr,3}$	Rate	X ₀ (2 GK)	X ₀ (3 GK)	0.4	-0.4	73 As + p $\leftrightarrow \gamma + ^{74}$ Se
	corr,3	Ttate	N ₀ (2 GH)	N ₀ (0 GH)	$^{84}\mathrm{Sr}$	0.6	$^{84}\mathrm{Sr}+\mathrm{n}\leftrightarrow\gamma+{}^{85}\mathrm{Sr}$
$^{74}\mathrm{Se}$	-0.5	73 As + p $\leftrightarrow \gamma$ + 74 Se	3.39×10^{-1}	2.41×10^{-1}		-0.5	83 Rb + p $\leftrightarrow \gamma$ + 84 Sr
	-0.4	$^{70}\mathrm{Ge} + \alpha \leftrightarrow \gamma + ^{74}\mathrm{Se}$	9.87×10^{-1}	9.15×10^{-1}	$^{98}\mathrm{Ru}$	-0.6	97 Ru + n $\leftrightarrow \gamma$ + 98 Ru
	-0.4	$^{75}\mathrm{Se} + \mathrm{n} \leftrightarrow \gamma + ^{76}\mathrm{Se}$	4.37×10^{-1}	3.22×10^{-1}	$^{106}\mathrm{Cd}$	-0.6	$^{105}\mathrm{Cd} + \mathrm{n} \leftrightarrow \gamma + ^{106}\mathrm{Cd}$
$^{84}\mathrm{Sr}$	-0.6	$^{83}\text{Rb} + \text{p} \leftrightarrow \gamma + ^{84}\text{Sr}$	2.83×10^{-1}	2.47×10^{-1}		0.6	109 In + p $\leftrightarrow \gamma$ + 110 Sn
$^{94}\mathrm{Mo}$	0.6	95 Mo + n $\leftrightarrow \gamma$ + 96 Mo	8.93×10^{-1}	7.59×10^{-1}	$^{108}\mathrm{Cd}$	-0.6	$^{107}\mathrm{Cd} + \mathrm{n} \leftrightarrow \gamma + ^{108}\mathrm{Cd}$
	-0.4	93 Mo + n $\leftrightarrow \gamma$ + 94 Mo	9.98×10^{-1}	9.71×10^{-1}		0.4	109 In + p $\leftrightarrow \gamma$ + 110 Sn
$^{96}\mathrm{Ru}$	-0.6	$^{95}\mathrm{Ru} + \mathrm{n} \leftrightarrow \gamma + ^{96}\mathrm{Ru}$	9.90×10^{-1}	9.23×10^{-1}	$^{113}\mathrm{In}$	0.6	113 Sn + n $\leftrightarrow \gamma$ + 114 Sn
	-0.4	$^{105}\mathrm{Cd} + \mathrm{n} \leftrightarrow \gamma + ^{106}\mathrm{Cd}$	5.25×10^{-1}	3.71×10^{-1}	$^{114}\mathrm{Sn}$	-0.6	113 Sn + n $\leftrightarrow \gamma$ + 114 Sn
	-0.4	109 In + p $\leftrightarrow \gamma$ + 110 Sn	9.89×10^{-1}	9.28×10^{-1}	$^{115}\mathrm{Sn}$	-0.6	114 Sn + n $\leftrightarrow \gamma$ + 115 Sn
98 Ru	-0.6	97 Ru + n $\leftrightarrow \gamma$ + 98 Ru	8.07×10^{-1}	6.26×10^{-1}	$^{120}\mathrm{Te}$	0.5	$^{121}\text{Te} + \text{n} \leftrightarrow \gamma + ^{122}\text{Te}$
$^{106}\mathrm{Cd}$	-0.6	$^{105}\mathrm{Cd}$ + n $\leftrightarrow \gamma$ + $^{106}\mathrm{Cd}$	5.25×10^{-1}	3.71×10^{-1}	$^{124}\mathrm{Xe}$		123 V \rightarrow 124 V
	0.4	$^{109} \mathrm{In} + \mathrm{p} \leftrightarrow \gamma + ^{110} \mathrm{Sn}$	9.89×10^{-1}	9.28×10^{-1}		-0.5	123 Xe + n $\leftrightarrow \gamma$ + 124 Xe
$^{108}\mathrm{Cd}$	-0.6	$^{107}\mathrm{Cd} + \mathrm{n} \leftrightarrow \gamma + ^{108}\mathrm{Cd}$	6.19×10^{-1}	4.22×10^{-1}	$^{130}\mathrm{Ba}$	-0.5	130 Ba + n $\leftrightarrow \gamma$ + 131 Ba
^{113}In	0.5	114 In + n $\leftrightarrow \gamma$ + 115 In	1.94×10^{-1}	9.60×10^{-2}	400	0.5	131 Ba + n $\leftrightarrow \gamma$ + 132 Ba
$^{115}\mathrm{Sn}$	-0.4	$^{114}\mathrm{Sn} + \mathrm{n} \leftrightarrow \gamma + ^{115}\mathrm{Sn}$	9.93×10^{-1}	9.14×10^{-1}	$^{132}\mathrm{Ba}$	0.4	133 Ba + n $\leftrightarrow \gamma$ + 134 Ba
$^{168}\mathrm{Yb}$	-0.6	164 Yb + $\alpha \leftrightarrow \gamma$ + 168 Hf	2.14×10^{-1}	1.28×10^{-1}	$^{152}\mathrm{Gd}$	-0.6	$^{152}\mathrm{Gd} + \mathrm{n} \leftrightarrow \gamma + ^{153}\mathrm{Gd}$
$^{174}\mathrm{Hf}$	-0.4	$^{170}\mathrm{Hf} + \alpha \leftrightarrow \gamma + ^{174}\mathrm{W}$	1.78×10^{-1}	1.08×10^{-1}		0.4	$^{153}\mathrm{Gd} + \mathrm{n} \leftrightarrow \gamma + ^{154}\mathrm{Gd}$
$^{97}\mathrm{Tc}$	0.5	$^{98}\mathrm{Tc} + \mathrm{n} \leftrightarrow \gamma + ^{99}\mathrm{Tc}$	2.83×10^{-1}	2.25×10^{-1}	$^{158}\mathrm{Dy}$	-0.6	157 Dy + n $\leftrightarrow \gamma$ + 158 Dy
	-0.5	$^{96}\mathrm{Tc} + \mathrm{n} \leftrightarrow \gamma + ^{97}\mathrm{Tc}$	3.00×10^{-1}	2.53×10^{-1}		0.5	156 Dy + n $\leftrightarrow \gamma$ + 157 Dy
	0.5	10 11 / 10	2.00 % 10	2.0010	$^{162}{ m Er}$	-0.5	$^{158}\mathrm{Er} + \alpha \leftrightarrow \gamma + ^{162}\mathrm{Yb}$
					174 LI f	0.4	$174 \text{Hf} \perp n \leftrightarrow \alpha \perp 175 \text{Hf}$

25 Msun

 $n \leftrightarrow \gamma + {}^{106}Cd$ 5.25×10^{-1} 3.71×10^{-1} $p \leftrightarrow \gamma + ^{110}Sn$ 9.89×10^{-1} 9.28×10^{-1} $n \leftrightarrow \gamma + {}^{108}Cd$ 6.19×10^{-1} 4.22×10^{-1} $p \leftrightarrow \gamma + ^{110}Sn$ 9.89×10^{-1} 9.28×10^{-1} $n \leftrightarrow \gamma + ^{114}Sn$ 1.89×10^{-1} 1.37×10^{-1} $n \leftrightarrow \gamma + ^{114}Sn$ 1.89×10^{-1} 1.37×10^{-1} 9.14×10^{-1} $n \leftrightarrow \gamma + ^{115}Sn$ 9.93×10^{-1} 9.50×10^{-2} $n \leftrightarrow \gamma + ^{122}Te$ 2.02×10^{-1} $n \leftrightarrow \gamma + ^{124}Xe$ 8.19×10^{-2} 4.78×10^{-2} $n \leftrightarrow \gamma + ^{131}Ba$ 3.75×10^{-1} 1.65×10^{-1} $n \leftrightarrow \gamma + ^{132}Ba$ 1.07×10^{-1} 5.85×10^{-2} $n \leftrightarrow \gamma + ^{134}Ba$ 1.17×10^{-1} 6.91×10^{-2} $n \leftrightarrow \gamma + ^{153}Gd$ 4.39×10^{-1} 1.97×10^{-1} $n \leftrightarrow \gamma + ^{154}Gd$ 5.38×10^{-2} 2.78×10^{-2} $n \leftrightarrow \gamma + ^{158}Dv$ 8.23×10^{-2} 4.12×10^{-2} $n \leftrightarrow \gamma + ^{157}Dy$ 1.49×10^{-1} 7.70×10^{-2} $\alpha \leftrightarrow \gamma + ^{162} Yb$ 3.10×10^{-1} 1.71×10^{-1} 174 Hf + n $\leftrightarrow \gamma$ + 175 Hf 1.01×10^{-1} 5.56×10^{-2} 1/4Hf -0.4 $^{184}\mathrm{Os} + \mathrm{n} \leftrightarrow \gamma + ^{185}\mathrm{Os}$ ^{184}Os 1.39×10^{-1} 7.78×10^{-2} ¹⁹⁶Hg $^{199}\text{Pb} + \text{n} \leftrightarrow \gamma + ^{200}\text{Pb}$ 2.03×10^{-1} 4.21×10^{-1} 0.5 $^{97}\mathrm{Tc}$ -0.4 96 Ru + n $\leftrightarrow \gamma$ + 97 Ru 9.91×10^{-1} 1.00

Rate

 X_0 (3 GK)

 1.76×10^{-1}

 2.41×10^{-1}

 7.27×10^{-1}

 2.47×10^{-1}

 6.26×10^{-1}

 X_0 (2 GK)

 3.53×10^{-1}

 3.39×10^{-1}

 9.31×10^{-1}

 2.83×10^{-1}

 8.07×10^{-1}

Possible Discussion Topics

- <u>Stellar structure from stellar evolution</u> models
 - differences from numerical modelling
 - · effects of rotation
 - going beyond 1-D: how nucleosynthesis is affected by
 - differences in structure (shells, convection zones)
 - differences in convection
- Stellar explosions
 - Differences from numerical modelling
 - Explosion energy, mass cut (mostly affecting inner zones?)
 - Differences from "effective" explosion treatment (piston, thermal bomb, PUSH, etc)
 - Neutrino fluxes "far out", neutrino spectra
 - beyond 1-D:
 - asphericity in burning front?
 - aspherical explosion (ejecting chunks in different directions)
- <u>how do these really affect explosive</u> <u>nucleosynthesis in outer layers?!</u>

Nuclear physics uncertainties

- involves nuclei at or close to stability
- high Coulomb barriers pose problem for experiments at relevant energies
- experiments cannot constrain most rates directly due to high T and high level densities
- most reactions are non-resonant compound (Hauser-Feshbach)
 - » low energy γ-widths (γ-strength function, NLD)
 - » low energy α -widths (α -optical potentials)
- comprehensive test of dependence of nucleosynthesis on nuclear input: <u>Further MC studies planned!</u>
- weak interactions for ν-process

Observational constraints

- e.g., no direct obs. possible for p-nuclei

Feeding into GCE models

 contribution of stars with different masses and metallicities