About me
I'm a Spanish Astrophysicist living in Switzerland. Between fondues and chocolates I like to study explosive scenarios using the smoothed particle hydrodynamics technique (SPH). My main focus is on Supernova explosions, and I have developed one of the few hydrodynamics codes (SPHYNX) that can simulate in 3D both types of Supernovas: Type Ia and Core Collapse.
I'm also interested in mergers and collisions of stellar objects, like for example compact objects such as white dwarfs and neutron stars, and their relevance for Supernova explosions and gravitational wave emission.
Computational Astrophysics is a very demanding field, where the knowledge on Astrophysics meets the knowledge in high-performance computing (HPC). In that respect I'm also diving deeper in the world of efficient, resilient, and scalable computing, in order to enable more complex, detailed, and longer astrophysical simulations.
Additionally, my current position allows me to get in contact with researchers from different fields, including life sciences, imaging, and computational sciences. In this respect, I'm lucky enough to contribute to truly interdisciplinary projects.
Contact
Scientific Computing Center
sciCORE - Office 1111
Klingelbergstrasse 61
Departement Physik
Universität Basel
Klingelbergstrasse 82
CH-4056 Basel
Switzerland
+41 61 207 18 82
ruben.cabezon <at> unibas.ch
orcid.org/0000-0003-3546-3964
My full list of publications in SAO/NASA ADS
Current projects
SPHYNX is an open source density-based new-generation Smoothed Particle Hydrodynamics code for Astrophysical applications. This is an always ongoing project. SPHYNX is the result of a work over a span of decades. This is an state-of-the-art smoothed particle hydrodynamics code that includes the latest improvements in the world of SPH.
The SPH-EXA and SPH-EXA2 projects aim at the ambitious goal of having a scalable and fault tolerant SPH kernel, developed into a co-design application that is exascale-ready. They are part of the Platform for Advanced Scientific Computing.
Latests Publications
Do not forget the electrons: Extending moderately-sized nuclear networks for multidimensional hydrodynamic codes
García-Senz, Domingo; Cabezón, Rubén M.; Reichert, Moritz; Lechuga, Axel S.; Escartín, José A.; Psaltis, Athanasios; Arcones, Almudena; Thielemann, Friedrich-Karl
A&A, 688, 218 (2024)
Mixing Sinc kernels to improve interpolations in smoothed particle hydrodynamics without pairing instability
Cabezón, Rubén M.; García-Senz, Domingo
MNRAS, 528, 3782 (2024)
New Kilohertz Gravitational-wave Feature from Rapidly Rotating Core-collapse Supernovae
Hsieh, He-Feng; Cabezón, Rubén; Ma, Li-Ting; Pan, Kuo-Chuan
ApJ, 961, 194 (2024)
Cornerstone: Octree Construction Algorithms for Scalable Particle Simulations
Keller, S.; Cavelan, A.; Cabezón, R. M.; Mayer, L.; Ciorba, F. M.
A&A, 670, A155 (2023)
Sub-stellar engulfment by a main sequence star: where is the lithium?
Cabezón, R. M.; Abia C.; Domínguez I.; García-Senz, D.
A&A, 670, A155 (2023)
Axisymmetric smoothed particle magnetohydrodynamics
García-Senz, D.; Wissing, R.; Cabezón, R. M.
MNRAS, 518, 4115 (2023)
A moderately-sized nuclear network to assist multi-D hydrodynamic simulations of supernova explosions
Sanz, A.; Cabezón, R. M.; García-Senz, D.
Proceedings of the 16th International Symposium of Nuclei in the Cosmos (2022)
Axisymmetric magneto-hydrodynamics with SPH
García-Senz, D.; Wissing, R.; Cabezón, R. M.
International SPHERIC Workshop (2022)
Conservative, density-based smoothed particle hydrodynamics with improved partition of the unity and better estimation of gradients
García-Senz, D.; Cabezón, R. M.; Escartín, J. A.
A&A 659, A175 (2022)
A Smoothed Particle Hydrodynamics Mini-App for Exascale
Cavelan, A.; Cabezón, R. M.; Grabarczyk, M.; Ciorba, F. M.
PASC20, ACM proceedings for PASC conference (2020)
Self-gravitating barotropic equilibrium configurations of rotating bodies with SPH
García-Senz, D.; Cabezón, R. M.; Blanco-Iglesias, J.M.; Lorén-Aguilar, P.
A&A 637, A61 (2020)
Two-level dynamic load balancing for high performance scientific applications
Mohammed, A.; Cavelan, A.; Ciorba, F.; Cabezón, R. M.; Banicescu, I.
SIAM proceedings of the Conference on Parallel Processing for Scientific Computing PP20 (2020)
Research interests
Core collapse Supernova
Numerical simulations of 3D CCSN using Smoothed Particle Hydrodynamics and different approximate neutrino treatments:
Type Ia Supernova in rotating WDs
Test the feasibility if the GCD scenario as SNIa engine taking into account the Coriolis forces that appear in rotating WDs.
Numerical hydrodynamics
Development in the Smoothed Particle Hydrodynamics method. Hydrodynamical instabilities and the Integral Approach to Derivatives. Dynamically adaptative kernels. 2D-axial SPH and self-gravity. Generalized volume elements.